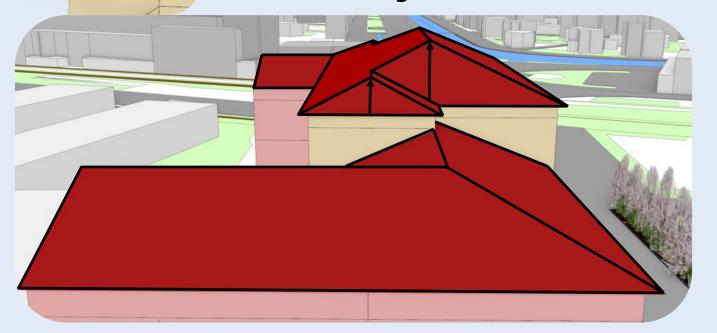
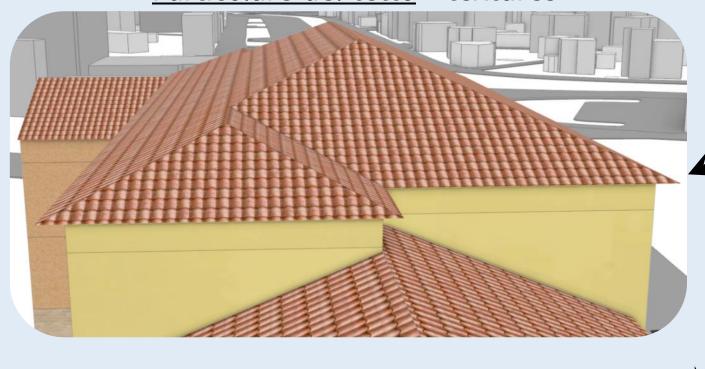


3D CITY MODELS DETTAGLIATI IN AMBIENTE ESRI ARCGIS PRO: UNA PRIMA ESPERIENZA

Christian Massimiliano BALDIN⁽¹⁾, Vittorio CASELLA⁽¹⁾, Paolo MARCHESE⁽¹⁾


(1) DICAR — Università degli Studi di Pavia, (christianmassimiliano.baldin; vittorio.casella; paolo.marchese)@unipv.it


Modello GIS 3D - colori a tinta unita

Particolari del tetto — sgrondatura La geometria multipatch consente una corretta ricostruzione di ciascun elemento con corrispondenza diretta alla tabella degli attributi

<u>Particolare del tetto</u> - textures

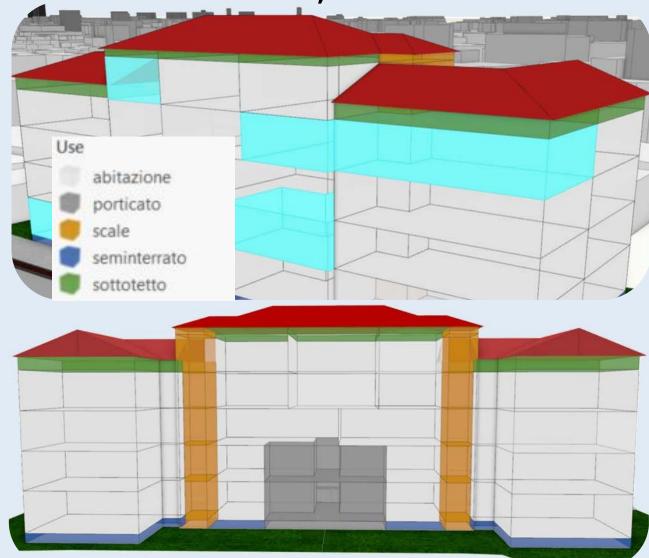
Particolari vari realizzati attraverso foto e textures muratura, portone, marciapiede, aiuole, terrazzo

Modello prismatico della città di Pavia

In evidenza Viale XI Febbraio con il modello colorato in tinta unita ad elevato grado di dettaglio a lato del Castello Visconteo

Modello GIS 3D - textures

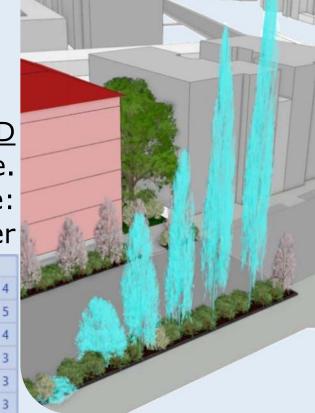
Casa in Viale XI Febbraio


Rampa — è possibile realizzare qualunque pendenza

Modello GIS 3D — colorazione logica

Ad ogni vano sono associati dati alfanumerici che possono essere posti in relazione fra di loro attraverso la tabella degli attributi: è funzionale selezionare e colorare grazie a query sui dati.

Non è BIM, non è CAD: è GIS 3D



Modello semplificato di terrazzo con finestre In questa parte del modello sono state realizzate delle finestre, utilizzate poi per le Analisi di Visibilità e delle Ombre

Utilizzo di una Libreria Parametrica ESRI 3D per la realizzazione della vegetazione. 3 parametri influenzano la visualizzazione: Tree Genus, Crown height, Crown diameter

Crown height	Specie	Species	Anno	Tree Genus	Crown diameter
1	Amolo	Prunus Cerasifera	2003	Dogwood	4
8	Amolo	Prunus Cerasifera	2003	Dogwood	5
15	Amolo	Prunus Cerasifera	2003	Dogwood	4
20	Amolo	Prunus Cerasifera	2003	Dogwood	3
30	Amolo	Prunus Cerasifera	2003	Dogwood	3
35	Amolo	Prunus Cerasifera	2003	Dogwood	3

Analisi di Visibilità: esempi di applicazioni alla "Smart City" del futuro

Gestione privacy e sicurezza dei percorsi pedonali L'osservatore è qui visible posto alla guida Not Visible della macchina. Il modello con textures include ora anche finestre trasparenti. Per realismo sono introdotti pedoni, automobili e un autobus convertiti in geometria

OBJECTID	Tree Genus	Crown height	Crown diameter
0	Dogwood	9	4
251	Dogwood	9	5
252	Dogwood	8	4
253	Dogwood	10	3
400	Boxwood	3	3
401	Boxwood	3	3
402	Hawthorn	3	3
436	Boxwood	3	3
437	Boxwood	3	3
438	Boxwood	3	3
439	Boxwood	3	3
441	Boxwood	3	3
OBJECTID	Tree Genus	Crown height	Crown diameter
250	Dogwood	2	1
251	Dogwood	2	1
252	Dogwood	2	1
253	Dogwood	2	1
400	Boxwood	2	1
401	Boxwood	2	1
402	Hawthorn	2	1
436	Boxwood	2	1
437	Boxwood	2	1
438	Boxwood	2	1
439	Boxwood	2	1
141	Boxwood	2	1

Analisi su larga scala della viabilità e della gestione del verde L'osservatore in

questo caso è posto all'altezza degli occhi della donna e osserva la strada. Nel primo riquadro la vegetazione è fitta, nel secondo (con l'utilizzo della Libreria ESRI 3D Parametrica) è ridotta in modo evidente: si possono condurre inoltre simulazioni tempo-varianti.

Analisi delle Ombre

Esempio di creazione di geometrie multipatch, generate dalla pianta illuminata dal sole alle 9 del mattino, attraverso finestra e muro del vano. In basso a sinistra il modello con le finestre e a destra la tabella degli attributi per ciascuna geometria.

Vegetazione_Multipatch 3 15/05/2021 12:00:00 141,247701 59,00566 -0,323115 0,400966 -0,857218 12,198529 1 | 15/05/2021 15:00:00 | 226,641196 | 56,577733 | -0,834634 11,497846 Vegetazione_Multipatch 3 15/05/2021 15:00:00 226,641196 56,577733 Vegetazione_Multipatch 0,399739 0,378939 -0,834634 11,497846 1 | 15/05/2021 18:00:00 | 270,067072 | 27,316381 0,000682 5,146522 Vegetazione_Multipatch 3 15/05/2021 18:00:00 270,067072 27,316381 0,888486 0,000682 -0,458904 5,146522 /egetazione_Multipatch

Studio del potenziale solare

Esempio di raster del potenziale solare calcolato per l'anno 2021: dal tetto realizzato attraverso la geometria multipatch è stato ricavato il raster delle quote e da questo il raster della radiazione solare qui presentato con la relativa legenda.

