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Abstract. In recent years, Deep Learning (DL) techniques and large amounts of 
pointwise labels are employed to segment point clouds of the built environment. 
However, annotating pointwise labels is a time-consuming task. To address this 
issue, we propose a label-efficient DL network that obtains per-point semantic 
labels of LoD3 (Level-of-Detail) building point clouds with limited supervision. 
Experimentally, we compared our approach to the fully supervised DL methods, 
and we find our approach achieved comparable results on the ArCH Data Set, 
with only 10% of labelled training data obtained from fully supervised methods 
as input.  
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1 Introduction 

In recent years, 3D buildings’ point cloud representation enables and promotes new 
applications in many fields such as Cultural Heritage preservation [1-2], Construction 
Engineering [3-4], Emergency Decision-making [5], and Smart Cities [6]. Extracting 
semantic information from 3D buildings’ point clouds to acquire high Level-of-Details 
(LoDs) modelling is an essential task [7]. 
 

LiDAR data sets have become available at an even growing resolution and accuracy. 
Inspired by the success of Deep Neural Networks (DNNs) used in Computer Vision 
(CV) to accomplish subset tasks (i.e., classification, detection and semantic 
segmentation), in recent research, fully-supervised Deep Learning (DL) techniques and 
large amounts of pointwise labels have been employed to train a segmentation network 
to be applied to buildings’ point clouds. However, fine-labelled point clouds of the built 
environment are hard to find and manually annotating pointwise labels is a time-
consuming and expensive task. The application of fully supervised learning for 
semantic segmentation of buildings’ point clouds at LoD3 level is severely limited.  

 
In CV, the hunger for fine-labelled pointwise training data is often tackled by using 

unsupervised methods. However, these approaches are mostly designed for 2D images, 
which are fundamentally different from unordered 3D point clouds. Furthermore, the 
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application of label-efficient unsupervised learning to downstream tasks in the 3D field 
is still limited to classification and segmentation tasks of small-scale point clouds. From 
a scientific viewpoint, the unsupervised DL-based semantic segmentation of buildings’ 
point clouds is still an open issue, and current knowledge about it is deeply 
unsatisfactory. 

  
To address this issue, we propose a novel label-efficient DL network that obtains 

per-point semantic labels of LoD3 buildings’ point clouds with limited supervision. In 
general, it consists of two main steps. The first step, named Autoencoder, is composed 
of a Dynamic Graph Convolutional Neural Network-based [8] encoder and a folding-
based decoder. It is designed to extract discriminative global and local features from 
input point clouds by reconstructing them without any label. The second step is the 
semantic segmentation network. By supplying a small amount of task-specific 
supervision, a segmentation network is proposed for semantically segmenting the 
encoded features acquired from the pre-trained Autoencoder.  

2 Related Work 

Unsupervised learning refers to learning methods without using any human-annotated 
labels. Since the scarcity of fine-labeled point cloud datasets, unsupervised learning 
methods have become popular alternatives to fully supervised learning to exploit the 
inherent and underlying information in large unlabeled datasets, which may 
dramatically decrease the need for labeled training data. Following the impressive 
results that have been achieved with unsupervised learning in the 2D image field, 
previous efforts to perform unsupervised learning on point clouds have been derived 
from tailoring these methods. Several unsupervised methods (e.g., Generative 
Adversarial Networks, Autoencoder) applied to 3D point clouds are reported in the 
literature, partly due to the common criticism that a huge amount of labeled data is 
required for training in a DNN. We provide a quick overview of both types of methods. 

2.1 Generative Adversarial Networks  

Typically, Generative Adversarial Networks (GANs) consist of a generator that learns 
how to map from a latent space to a data distribution of interest. A discriminator 
distinguishes generated point cloud produced by the generator from the true data 
distribution. For example, Achlioptas [9] investigated and compared GAN-based 
method for generating point clouds in raw data space and latent space of a pre-trained 
autoencoder. Li [10] proposed a “sandwiching” reconstruction method that combines a 
modification of Wasserstein GAN [11] loss with Earth Mover’s Distance (EMD). 
AtlasNet [12] introduces a shape generation framework that represents a 3D shape as a 
collection of parametric surface elements by locally mapping a set of squares to the 
target surface of a 3D shape. Although impressive results were achieved, GAN-based 
methods more focus on generative models of point clouds, which aims to generate point 
clouds or complete shapes of point clouds.  
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2.2 Autoencoders (AEs)  

An Autoencoder (AE) is trained to learn a compressed representation by faithfully 
reconstructing input original image/point cloud [13]. In FoldingNet [14], the authors 
adopted the idea of the folding-based decoder to deform a canonical 2D grid onto the 
underlying 3D object surface of a point cloud, in which the learned representation 
achieves high linear SVM classification accuracy on ModelNet40 dataset. Built on the 
fully supervised PPFNet [15] and FoldingNet, in PPF-FoldNet [16] the authors improve 
their earlier solution by involving more features in their network in an unsupervised 
fashion. PPF-FoldNet achieves better reconstruction performance at rotations and 
different point densities, but their research focuses on reconstruction rather than 
downstream tasks. BAE-NET [17] proposed a branched AE network which trains with 
a collection of objects from the ShapeNetPart dataset trained with a shape co-
segmentation task. 
 

Existing methods achieve state-of-the-art in their downstream tasks (i.e., 
classification, part-segmentation and co-segmentation). However, most of these 
existing unsupervised AE methods for 3D point clouds are: 1) trained and tested using 
simple 3D objects; 2) designed for low-level tasks such as reconstruction, denoising 
and completion that are not designed for high-level downstream semantic segmentation 
task, resulting in downstream tasks of these AE methods that have not been applied to 
high-level semantic segmentation tasks either.  

 

3 Method 

In FoldingNet, an Autoencoder (AE) is utilized to reconstruct input point clouds, whilst 
discriminative representations were learned without any labelled data. Inspired by this, 
our label-efficient method aims to: (1) construct an AE network for extracting features 
without any labelled data; (2) with just a few labelled data, we train a segmentation 
network for the high-resolution LoD3 buildings’ point cloud semantic segmentation. 
Specifically, we proposed an AE network that may learn representations without any 
label by a dynamically updated graph-based encoder and folding-based decoder. Thus, 
we may reduce the need for large amounts of labels. Instead of the encoder in 
FoldingNet, we employ the EdgeConv layers in Dynamic Graph Convolutional Neural 
Network (DGCNN) to exploit local geometric structures and generate discriminative 
representations. Then, we use the learned representations as input to our downstream 
task. In general, the proposed network architecture (see Fig. 1) consists of two 
components: an AE and a segmentation network. 
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Fig. 1. The architecture of our Autoencoder-based building point cloud semantic segmentation 
network. Our approach works in two steps: on the top row is the Autoencoder step, and on the 
bottom row is the downstream segmentation step.  

3.1 Autoencoder 

The input of the AE is given by the N coordinates (x, y, z) of buildings’ points, and 
intermedia outputs are discriminative features, which are also the input of both decoder 
of AE and the segmentation network. The final outcome is a matrix of size (m, 3) 
representing the reconstructed point cloud. We use graph-based layers to extract the 
local geometric information around points and a max-pooling layer to aggregate 
information. The edge features are computed as follows: 

 ℎ"(𝑥%, 𝑥') 	= 	 ℎ"(𝑥%, 𝑥'−𝑥%) (1) 

In this edge function, 𝑥% is the central point belonging to Point Set {𝑋 = 	𝑥%, … , 𝑥.} 
⊆ ℝ1, 𝑥' is the local neighbors around the central point 𝑥% and ℎ" is implemented by a 
fully connected multi-perceptron layer, which includes learnable parameters. 
EdgeConv captures the global shape by encoding the coordinates of 𝑥%, then obtains the 
local information by encoding 𝑥' − 𝑥%. Then the learned local information aggregated 
by a local max-pooling operation on the constructed graphs 𝐺 = (𝑉, 𝐸), where 𝑉 =
{1, . . . , 𝑁} and 𝐸 ⊆ 𝑉×𝑉 are the and the edges respectively and N is the number of 
vertices. 

 
We use the “codeword” output from the DGCNN-based encoder and a 2D grid as 

input to our decoder. A folding-based decoder is then utilized to reconstruct input 
“codeword” with a 2D grid to 3D point clouds by two successive folding operations. 
The folding-based decoder in our AE network is adopted from FoldingNet’s decoder 
that contains two successive folding operations. The first folding operation folds the 
2D manifold into 3D space, and the second one operates inside the 3D space. 

3.2 Semantic Segmentation Network  

To semantically segment buildings’ point clouds, we created a segmentation network. 
The goal here is to assign a semantic label to each of the points given an input point 
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cloud. Hence, we treat this semantic segmentation as a per-point classification task. The 
output of the pre-trained AE is a Cout-dimensional representation (“codeword”) and 
three stacked edge features, which are learned from non-labelled buildings’ point 
clouds. We replicate the codeword N times and concatenate it with the outputs of three 
EdgeConv layers in the pre-trained AE. A standard 3-layer shared Multi-Layer 
Perceptron (MLP) with a cross-entropy loss is then employed as our semantic 
segmentation classifier after the above concatenation. Considering the features 
obtained by the proposed AE are already distinctive, we chose this simplest MLP for 
the segmentation of the point cloud. This semantic segmentation network is trained 
independently from the proposed AE. The final output is per-point classification scores 
(m, n_classes) for the segmentation network.  
 

4 Experiment 

4.1 Implementation Details 

Experimentally, we evaluate our approach based on the ArCH Data Set [18], which is 
acquired by both terrestrial laser scanners (i.e., a FARO Focus 3D X 130 and 120 a 
Riegl VZ-400) and Structure-from-Motion Photogrammetry based on images collected 
by a DJI Phantom UAV platform equipped with a SONY Ilce 5100L camera.  
 
Our primary motivation to study unsupervised classification problems is that the 
number of training data is limited. To test the performance when the number of 
unlabelled and labelled data is small, we select three small (SMV_1, SMV_24, 
SMV_28) scenes from the 15 labelled scenes as the training data in both unsupervised 
AE training and supervised segmentation training stage. The training data in our 
experiment is only 10% of state-of-the-art [2], where 10 scenes are used as training 
data. Then we follow the settings in state-of-the-art [2] that remove the “others” 
category, select two unseen scenes: “A_SMG_portico” (Scene_A) and 
“B_SMV_chapel_27to35” (Scene_B) as our test data. We choose 1m×1m area as the 
block size for splitting each building scene into blocks to train. Prior to training, the 
input point clouds are aligned to a common reference frame. In addition, for training 
convenience, the points in each block are sampled into a uniform number of 8,192 
points. At training time, we randomly sample n (2,048 or 4,096) points in each block 
on-the-fly. To train our AE network, we employ ADAM as an optimizer with an initial 
learning rate 0.001, batch size 16, and weight decay 1e−6, during 250 epochs. The 
setting of hidden layers in our encoder is the same as DGCNN, but we remove the 
layers after the max-pooling layer. Similarly, in the semantic segmentation network, 
we also use ADAM as our optimizer (learning rate 0.01, batch size 16, 250 training 
epochs). According to the dimension of Cout, our shared MLPs is (Cout+64+64+64, 
512, 256, 128, n_classes) with layer output sizes (512, 256, 128, n_classes) on each 
point. The evaluation metrics of overall accuracy (OA) and mean Intersection-over-
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Union (mIoU) are calculated on the ArCH Data Set. The method is implemented using 
PyTorch. All experiments are conducted on an NVIDIA Tesla T4 GPU. 

4.2 Results 

If the features obtained by the proposed AE are already distinctive, the required number 
of labelled data in semantic segmentation network training process should be small. In 
this section, to demonstrate this intuitive statement, we report our experiment’s results 
on the ArCH Data Set. We evaluate our model on an unseen scene (Scene_B) for 
testing. In Table 1, the overall performances are reported and compared with respect to 
state-of-the-art methods, which are retrieved from Pierdicca [2]: PointNet [19], 
PointNet++ [20], DGCNN [8] with 10 scenes, and DGCNN with 15 scenes [2] as 
training data. 

Overall, with only about 10% of training data of state-of-the-art (SOTA) methods in 
both AE and segmentation network training stages, our model achieves the best results 
on the ArCH dataset with the same training strategy (only input x, y, z coordinates), as 
shown in Table 1. The mIoU on Scene_B is 0.408, which also outperforms the 0.353 
of SOTA. The semantic segmentation qualitative results Scene_B are shown in Fig. 2, 
respectively. Our network is able to output smooth predictions. 

Table 1. Our results vs. prior works on Architectural Cultural Heritage (ArCH) Data Set. mIoU 
denote mean Intersection-over-Union. Our method performs the best on mIoU with only 3 

scenes (about 10% of 10 scenes). 

Networks Train Scenes mIoU 
PointNet [17] 10 scenes 0.114 
PointNet++ [18] 10 scenes 0.121 
DGCNN [8] 10 scenes 0.29 
DGCNN [2] 15 scenes 0.353 
Ours 3 scenes 0.408 

4.3 Comparison with Different Training Data Size 

To evaluate the impact of training data size (both labeled and unlabeled), we further 
provided more solid experiments on another unseen Scene_A from four aspects: 

• Add one scene (“4_CA_church”) as unlabeled training data in AE training 
stage; 

• Add one scene (“4_CA_church”) as labeled training data in segmentation 
network training stage; 

• Add one scene (“4_CA_church”) both in AE and segmentation network 
training stage; and 

• Decrease the labeled training data size, we just keep one scene 
(“7_SMV_chapel_24”) in the segmentation network training stage. 
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Fig. 2. Qualitative results of Scene_B for semantic segmentation. The ground truth (a), and the 
prediction result (b) of Scene_B on north side. Different colors dente different categories. Scenes 
from same row are displayed in the same camera viewpoint. 

The result of the segmentation result on Scene_A is shown in Table 2. The result here 
suggested that if we add labeled training data in segmentation network training stage 
will further improve our performance. For instance, when we add one labeled scene in 
the segmentation network training stage, our performance will increase by 1% and 3% 
on the AE pre-trained on three scenes and four scenes, respectively. Furthermore, no 
increase was detected when we tried to add the unlabeled training data, which infer 
through training AE from three scenes, we have already been learned a good 
representation. More importantly, we can further prove our network is label efficient. 
As even the labeled data was decreased to just one scene (4% of overall labeled data in 
the supervised method), our overall accuracy still remains at 0.695. 
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Table 2. Analysis of the varying size of training data in the AE training stage and segmentation 
network training stage. “AE_training_scene” and “Seg_training_scene” denote the number of 

scenes of ArCH Data Set used in our AE and segmentation training phases, respectively. 

AE_training_scene Seg_training_scene OA_Scene_A 
3_scene 1_scene 0.695 
3_scene 3_scene 0.747 
3_scene 4_scene 0.76 
4_scene 3_scene 0.743 
4_scene 4_scene 0.772 

 

5 Conclusions 

In this study, we have presented an effective label-efficient unsupervised network for 
LoD3 buildings' point cloud semantic segmentation. The result in our experiment 
provide support that our proposed Autoencoder architecture may learn powerful 
representations from unlabeled data, and these representations can be further used in 
downstream tasks. Furthermore, the segmentation task of building point clouds 
obtaining equal or better results with respect to the state of the arts on the basis of only 
10% training data from the ArCH Dataset.  

In future work, it might be possible to improve the performance by breaking through 
the input block size and incorporating more features (if available – see [21]) of the input 
point cloud of buildings while using the very limited amount of labeled training data. 
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